CS 1: Introduction to Computer Programming

Recitation 4: Exceptions and Dictionaries Solutions

In today's syntax recitation, we'll cover exceptions and dictionaries!

Problem Solutions

Anagrams (topics: Dictionaries)

Lets find all of the anagrams for a given word. An anagram is a rearrangement of the letters in a word that still
yield a valid word. Assume that we have predefined a WORDS set, which contains all the possible valid words
in the english language. Implement both build_words_map and anagrams.

Hint: Sorted returns a list of all the letters in a word, sorted by alphabetical order.

1
2 WORDS: set[str] = {...} #Assume that words is defined

3
4 def build_words_map(words: set[str]) —> dict[str, set[str]l]:
5
6

Maps a given sequence of sorted letters to all the possible combinations of those letters that are
considered valid English words.

7

3 For example, if we have the valid english words {"cat", "act", "tar", "rat", "art"}, we should
return the resulting dictionary:

9

10 {"aCt": {"aCt", "Cat"}, "art".' {"al’t", "rat", "tar"}}

11 nun

12 words_map = {}

13

14 for word in words:

15 key = ''.join(sorted(word)) #Returns the sorted version of the word

16 if key not in words_map

17 words_map[key] = set()

18 words_map [key] .add(word)

19 return words_map

20

21 WORDS_MAP = build_words_map (WORDS)

22

23 def anagrams(word: str) —> list[str]:

24 nun

25 Returns a list of anagrams for a given letters. If there are no valid words that this word maps to,
then return an empty list.

26 nun

27 key = ''.join(sorted(word))

28

29 if key in WORDS_MAP

30 return WORDS_MAP [key]

31

32 return []



Grading Script (topics: Dictionaries and exceptions)
Lets write a grading script together!

Implement convert_grade, which takes in a string representing the grade of a student, and returns the integer
representation of that string. However, if the input cannot be turned into an integer or if the input is less than

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26

27

28

29

30

31

0 or greater than 100, raise a ValueError.

def convert_g

rade(grade: str) —> int:

if | grade_int < 0 or grade_int > 100

raise)

return gra

Below is some code to process grades. If convert_grade raises a ValueError, then we print the error message

de_int

associated with that.

grades = {}
done = False

while not done:
try:
name = input(Enter the name of the student:
grade = input(Enter your grade: )
numeric_grade = convert_grade(grade)
if name in grades:
grades[name].append(numeric_grade)
else:
grades[name] = [numeric_grade]
done = bool(input(Are you done? (True/False)))
except ValueError as e:
print(e)

Now that grades have been finalized, use grades to compute the highest average score across all students.

best_student

best_score =

for entry in

avg = sum(

= None

-1

grades:

try
grade_int = int(grade)
except ValueError
raise ValueError("Grade must be a number.")

ValueError("Grade must be between 0 and 100.")

grades[entry]

len(grades[entry]

if

avg > best_score

best_st

best_sc

print((best_s

udent = entry

ore = avg

tudent, best_score))




