CS 1: Introduction to Computer Programming

Recitation 4: Exceptions and Dictionaries Solutions

In today's syntax recitation, we'll cover exceptions and dictionaries!

Problem Solutions

Anagrams (topics: Dictionaries)

Lets find all of the anagrams for a given word. An anagram is a rearrangement of the letters in a word that still
yield a valid word. Assume that we have predefined a WORDS set, which contains all the possible valid words
in the english language. Implement both build_words_map and anagrams.

Hint: Sorted returns a list of all the letters in a word, sorted by alphabetical order.

1
2 WORDS: set[str] = {...} #Assume that words is defined

3
4 def build_words_map(words: set[str]) —> dict[str, set[str]l]:
5
6

Maps a given sequence of sorted letters to all the possible combinations of those letters that are
considered valid English words.

7

3 For example, if we have the valid english words {"cat", "act", "tar", "rat", "art"}, we should
return the resulting dictionary:

9

10 {"aCt": {"aCt", "Cat"}, "art".' {"al’t", "rat", "tar"}}

11 nun

12 words_map = {}

13

14 for word in words:

15 key = ''.join(sorted(word)) #Returns the sorted version of the word

16 if key not in words_map

17 words_map[key] = set()

18 words_map [key] .add(word)

19 return words_map

20

21 WORDS_MAP = build_words_map (WORDS)

22

23 def anagrams(word: str) —> list[str]:

24 nun

25 Returns a list of anagrams for a given letters. If there are no valid words that this word maps to,
then return an empty list.

26 nun

27 key = ''.join(sorted(word))

28

29 if key in WORDS_MAP

30 return WORDS_MAP [key]

31

32 return []



Grading Script (topics: Dictionaries and exceptions)
Lets write a grading script together!

Implement convert_grade, which takes in a string representing the grade of a student, and returns the integer
representation of that string. However, if the input cannot be turned into an integer or if the input is less than
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0 or greater than 100, raise a ValueError.

def convert_g

rade(grade: str) —> int:

if | grade_int < 0 or grade_int > 100

raise)

return gra

Below is some code to process grades. If convert_grade raises a ValueError, then we print the error message

de_int

associated with that.

grades = {}
done = False

while not done:
try:
name = input(Enter the name of the student:
grade = input(Enter your grade: )
numeric_grade = convert_grade(grade)
if name in grades:
grades[name].append(numeric_grade)
else:
grades[name] = [numeric_grade]
done = bool(input(Are you done? (True/False)))
except ValueError as e:
print(e)

Now that grades have been finalized, use grades to compute the highest average score across all students.

best_student

best_score =

for entry in

avg = sum(

= None

-1

grades:

try
grade_int = int(grade)
except ValueError
raise ValueError("Grade must be a number.")

ValueError("Grade must be between 0 and 100.")

grades[entry]

len(grades[entry]

if

avg > best_score

best_st

best_sc

print((best_s

udent = entry

ore = avg

tudent, best_score))




