
CS 1: Introduction to Computer Programming
Recitation 4: Exceptions and Dictionaries

In today’s syntax recitation, we’ll cover exceptions and dictionaries!

Problems
Anagrams (topics: Dictionaries)
Lets find all of the anagrams for a given word. An anagram is a rearrangement of the letters in a word that still
yield a valid word. Assume that we have predefined a WORDS set, which contains all the possible valid words
in the english language. Implement both build_words_map and anagrams.
Hint: Sorted returns a list of all the letters in a word, sorted by alphabetical order.

1
2 WORDS: set[str] = {...} #Assume that words is defined
3
4 def build_words_map(words: set[str]) −> dict[str, set[str]]:
5 """
6 Maps a given sequence of sorted letters to all the possible combinations of those letters that are

considered valid English words.
7
8 For example, if we have the valid english words {"cat", "act", "tar", "rat", "art"}, we should

return the resulting dictionary:
9

10 {"act": {"act", "cat"}, "art": {"art", "rat", "tar"}}
11 """
12 words_map = {}
13
14 for word in words:
15 key = ''.join(sorted(word)) #Returns the sorted version of the word

16 if :

17 = set()

18

19 return words_map
20
21 WORDS_MAP = build_words_map(WORDS)
22
23 def anagrams(word: str) −> list[str]:
24 """
25 Returns a list of anagrams for a given letters. If there are no valid words that this word maps to,

then return an empty list.
26 """
27 key = ''.join(sorted(word))
28

29 if :

30 return

31
32 return []

1

Grading Script (topics: Dictionaries and exceptions)

Lets write a grading script together!

Implement convert_grade, which takes in a string representing the grade of a student, and returns the integer
representation of that string. However, if the input cannot be turned into an integer or if the input is less than
0 or greater than 100, raise a ValueError.

1 def convert_grade(grade: str) −> int:

2 :

3 grade_int = int(grade)

4 :

5 ValueError("Grade must be a number.")

6

7 if :

8 ValueError("Grade must be between 0 and 100.")

9 return grade_int

Below is some code to process grades. If convert_grade raises a ValueError, then we print the error message
associated with that.

10 grades = {}
11 done = False
12 while not done:
13 try:
14 name = input(Enter the name of the student: ")
15 grade = input(Enter your grade:)
16 numeric_grade = convert_grade(grade)
17 if name in grades:
18 grades[name].append(numeric_grade)
19 else:
20 grades[name] = [numeric_grade]
21 done = bool(input(Are you done? (True/False)))
22 except ValueError as e:
23 print(e)

Now that grades have been finalized, use grades to compute the highest average score across all students.

24 best_student =

25 best_score =

26 for entry in grades:

27 avg = sum() /

28 if :

29 best_student =

30 best_score =

31 print((best_student, best_score))

2

