
CS 1: Introduction to Computer Programming
Recitation 2: Prepare to Battle Ships (part 2!) Solutions
In this second “problem-solving session”, we will take a closer look at functions and cumulative algorithms. We
will explore how functions can help you structure code more effectively to make it reusable. We will also see
some cases of cumulative algorithms which are essential for solving problems that require maintaining a running
sum, product, or result.

If you have any questions, don’t hesitate to ask for help! That’s what we’re here for!

Common Errors
Always Use a return to Pass Back a Value

Input/Output Example
1 def add_two_numbers(operand1, operand2):
2 sum = operand1 + operand2 # sum is not returned
3
4 print(add_two_numbers(3, 5))
5
6 def add_two_numbers(a, b):
7 sum = operand1 + operand2
8 return sum # value passed back when function is called
9

10 print(add_two_numbers(3, 5))

>> None
>> 8

Arguments Should be Used to Avoid Hard-Coding Values

Input/Output Example
1 def greeting_message_hopper():
2 print("Nice to meet you, Hopper!")
3
4 def greeting_message_adam():
5 print("Nice to meet you, Adam!")
6
7 greeting_message_hopper()
8 greeting_message_adam()
9

10 def greeting_message(user):
11 print(f"Nice to meet you, {user}!")
12
13 greeting_message("Hopper") # we can use a single function for all users
14 greeting_message("Adam")

>> Nice to meet you, Hopper!
>> Nice to meet you, Adam!
>> Nice to meet you, Hopper!
>> Nice to meet you, Adam!

1

Understand Variable Scope Within Functions

Input/Output Example
1 bank_balance = 5000
2
3 def subtract_from_balance(balance, amount):
4 bank_balance = balance - amount # variables defined in a function are local to that

function
5
6 subtract_from_balance(bank_balance, 2000)
7 print(bank_balance)

>> 5000

Encapsulate Repeating Code

Input/Output Example
1 game_1_result = "win"
2 game_2_result = "lose"
3
4 if game_1_result == "win":
5 print("You won!")
6 else:
7 print("You lost!")
8
9 if game_2_result == "win":

10 print("You won!")
11 else:
12 print("You lost!") # imagine we have 50 other games...
13
14
15 def game_result(result):
16 if result == "win":
17 print("You won!")
18 else:
19 print("You lost!") # we can use this function for all games!
20
21 game_result(game_1_result)
22 game_result(game_2_result)

>> You won!
>> You lost!
>> You won!
>> You lost!

2

Use Descriptive Argument Names

Input/Output Example
1 def merch_order(a, b, c):
2 print(f"You ordered {c} {b} {a}.")
3
4 merch_order(50, "blue", "t-shirts") # I am not even sure what to put where...
5
6 def merch_order(item, color, quantity):
7 print(f"You ordered {quantity} {color} {item}.")
8
9 merch_order("t-shirts", "blue", 50) # now that's much easier to understand

>> You ordered t-shirts blue 50.
>> You ordered 50 blue t-shirts.

Ensure Proper Indentation

Input/Output Example
1 def sum_to_n(n):
2 sum = 0
3 for i in range(n+1):
4 sum += i
5 return sum # sum is returned prematurely
6
7 print(sum_to_n(10))
8
9 def sum_to_n(n):

10 sum = 0
11 for i in range(n+1):
12 sum += i
13 return sum # sum is returned once all iterations of the for loop have been completed
14
15 print(sum_to_n(10))

>> 0
>> 55

3

Problem Solutions
Some randomization

Worked Example
Mastermind

In the game Mastermind, players must guess a color combination in the least amount of turns. The
colors they can guess from are: red (R), green (G), blue (B), yellow (Y), orange (O), pink (P), grey (Gr),
and white (W). Write a function make_combination that returns a string of 4 random colors.

1 import random
2 colors = ["R", "G", "B", "Y", "O", "P", "Gr", "W"]
3
4 def make_combination():
5 combination = ""
6 for i in range(4):
7 combination += random.choice(colors)
8 return combination
9

10 print(make_combination()) # Example output: "RGBB"

Faded Example
License Plates

In many states, license plates follow a specific format: 3 uppercase letters followed by 4 digits
(e.g. "ABC1234"). Write a function generate_license_plate() that returns a string in this format.

1 import random
2 import string
3
4 upper_case_letters = string.ascii_uppercase # string containing all ASCII uppercase characters
5
6 def generate_license_plate():

7 license_plate = ""

8 for i in range(3) :

9 licence_plate += random.choice(upper_case_letters)

10 for i in range(4) :

11 licence_plate += random.randint(0,9)

12 return license_plate

4

Your Turn
Treasure Map

Create a function generate_treasure_map that takes two arguments, rows and cols, which represent
the size of the treasure map. The function should return a list of string rows where one randomly selected
cell contains a treasure, marked as "T", and all other cells are represented by ".". A good way to structure
your code would be to make a 2D grid filled with ".", update the value of a random cell to "T", and finally
you can .join the elements of each row.
Example output of generate_treasure_map(4, 5):

1 [".....", ".....", "T....", "....."]

1 import random

Solution:
1 def generate_treasure_map(rows, cols):
2 map = []
3 for i in range(rows):
4 row = []
5 for j in range(cols):
6 row.append(".")
7 map.append(row)
8
9 map[random.randint(0, rows−1)][random.randint(0, cols−1)] = "T"

10
11 for i in range(len(map)):
12 map[i] = "".join(map[i])
13 return map

5

Cumulative Algorithms 1 (DNA)

Worked Example
Counting Nucleotides

Write a function count_nucleotide that takes in a dna_sequence and a nucleotide and returns the
number of times that nucleotide appears in the dna_sequence .

1 def count_nucleotide(dna_sequence, nucleotide):
2 count = 0
3 for nuc in dna_sequence:
4 if nuc == nucleotide:
5 count += 1
6 return count

Faded Example
Mutations

Write a function count_mutations(orig_seq, synth_seq) that counts the number of mutations in
synth_seq, which was synthesized from orig_seq. Assume you have a function
matching_sequence(orig_seq) that returns the perfect synthesized sequence from orig_seq.

1 def count_mutations(orig_seq, synth_seq):
2 perfect_seq = matching_sequence(orig_seq)
3

4 mutations = 0

5 for i in range(len(synth_seq) :

6 if perfect_seq[i] != synth_seq[i]:

7 mutations += 1

8 return mutations

6

Your Turn
Longest Consecutive Nucleotide

Write a function longest_repeating_nucleotide that takes in a dna_sequence and returns the
length of the longest consecutive sequence of the same nucleotide in dna_sequence.
Hint: think about what you will need to track and initialize the proper variables. In your for loop, what
are the different cases you might want to consider?

• longest_repeating_nucleotide("AATTTGC") should return 3

• longest_repeating_nucleotide("AATTCCGG") should return 2

Solution:
1 def longest_repeating_nucleotide(dna_sequence):
2 max = 0
3 current_length = 0
4 current_nucleotide = ''
5 for i in range(len(dna_sequence)):
6 if current_nucleotide != dna_sequence[i]:
7 current_nucleotide = dna_sequence[i]
8 current_length = 0
9 current_length += 1

10 if current_length > max:
11 max = current_length
12 return max

7

Cumulative Algorithms 2 (Rainfall)

Worked Example
Total Rainfall

Write a function total_rainfall that takes in a list of daily rainfall amounts, rainfalls, and returns the
total rainfall on days when it rained more than 1 unit.

1 def total_rainfall(rainfalls):
2 total = 0
3 for rain in rainfalls:
4 if rain > 1: # More than 1 unit of rain
5 total += rain
6 return total

Faded Example
Weighted Average Rainfall

Write a function weighted_average_rainfall that takes in the lists rainfalls and weights and
returns the weighted average of rainfall on days where it rained more than 1 unit. The weights list
corresponds to the importance of each days rainfall.

1 def weighted_average_rainfall(rainfalls, weights):

2 total_weighted_rain = 0

3 total_weight = 0

4 for i in range(len(rainfalls)):

5 if rain > 1 :

6 total_weighted_rain += rainfalls[i] * weights[i]

7 total_weight += weights[i]

8 if total_weight > 0 :

9 return total_weighted_rain / total_weight

10 else:

11 return 0

8

Your Turn
Cumulative Rainfall

Write a function cumulative_rainfall that takes in a list of rainfall amount per day, rainfalls, and
returns a new list with each element corresponding to the total amount of rainfall from day 0 to day i.

• cumulative_rainfall([0,1,1,2,0,0,3,4]) should return [0,1,2,4,4,4,7,11]

• cumulative_rainfall([2,5,0,2,0,0,0,2]) should return [2,7,7,9,9,9,9,11]

Solution:
1 def cumulative_rainfall(rainfalls):
2 cumulative = []
3 total = 0
4 for i in range(len(rainfalls)):
5 total += rainfalls[i]
6 cumulative.append(total)
7 return cumulative

9

